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Abstract

Hidden Mark ov models (HMMs) are stoc hastic models
capable of statistical learning and classification. They
have been used in speech recognition and handwriting
recognition because of their great adaptability and ver-
satility. However, as these models deal with the state
transition information in just one direction, they do
not fully explore the bidirectional context dependence
contained in a random sequence. The state transition
mformation in the other direction is missing from ob-
setvation evaluation and model training. This paper
presents a dual hidden Markov model (DHMM) whic h
gives a solution to the above problem. The model is
based on the first order partial context dependence as-
sumption. With this assumption, a DHMM is relativ ely
simple such that it contains two HMMs that share a
common sym bol emission matrix. One of the HMMs
deals with the backward context dependece (forward
state transition) while the other deals with the for-
Ward context dependence (backward state transition).
The bidirectional context information is then integrated
info observation evaluation and model training. The
observation evaluation is solved using Baum’s forward-
kward procedure, and the DHMM m ultiple observa-
ﬁ}on training is solved using a maxim um likelihood es-
timation method. The derived training equations guar-
antee not only the convergence but also the adaptability
of the training process.
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1

Hidden Markov models (HMMs) are stoc hastic models
which were introduced and studied in the late 1960s

and early 1970s [1, 2, 3, 4, 5]. These models have been

explored by many researchers since then, see for exam-

ple [6, 7, 11, 12, 13, 14, 15, 16] because they have a rich

mathematical structure. For many years HMMs ha ve
been used in speech recognition [6, 7, 8,9, 10, 11]. More

recently they have also been proposed for handwrit-

ing recognition [17, 18, 19, 20, 21] as they are adaptive

to random sequential signals and capable of statistical

learning and classification.

A hidden Markov process is a doubly stochastic pro-
cess: an underlying process which is hidden from obser-
vation, and an observable process which is determined
by the underlying process. The underlying process is
characterized by a state transition probability distribu-
tion, where a current state is hidden from observation
and depends only on previous state(s). On the other
hand, the observable process is characterized by a sym-
bol emission probability distribution, where a current
symbol depends on the current state transition, or sim-
ply the current state.

Indeed, HMMs ha ve a great adaptability in handling
sequential signals. On the other hand, if one review
these models from con text dependence point of view,
one can see that these models utilize the context de-
pendence in just forward state transition, and the con-
text dependence in backward state transition is not ex-
plored. As a result, the bidirectional context informa-
tion contained in a random sequence is missing from
observation evaluation and model training.

This paper presents a dual hidden Markov model
(DHMM) whic h gives a solution to the above problem.
The model is based on the first order partial context
dependence assumption and is capable of handling the
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bidirectional context information. With this assump-
tion, a DHMM is relatively simple such that it contains
two HMMs that share a common symbol emission ma-
trix. One of the HMMs deals with the backward context
dependence (forward state transition) while the other
deals with the forward context dependence (backward
state transition). The bidirectional context informa-
tion is then integrated into observation evaluation and
model training.

The remainder of this paper is organized as follows.
Section 2 outlines the dual hidden Markov model. Sec-
tion 3 presents a solution to the observation evaluation
problem using both the forward state transition and
the backward state transition. Section 4 describes a
method for DHMM multiple observation training. Fi-
nally, Section 5 concludes this paper.

2 Dual Hidden Markov Model

2.1 The hidden process

Let ¢(t) be a discrete stochastic hidden process such
that
T (1)

) =q €5 &= L2y

where

S:{SLSQ,"',SN} (2)

is a set of states, and Vi, ¢, satisfies:

0< P(ge=5i) <1

N
> Plee=Si)=1 ®)
=1

Thus, ¢(t) forms a random source. From this source,
we can get many different state sequences and any of
them can be expressed as:

g €5, st T (4)
Let us consider the property of ¢(t). Within a state
sequence (), the first order bidirectional context depen-

dence of a current state ¢, is rather complicated:

Q =qq2 9T,

P(‘h:q&—luqt+1)
P(gi-1,qt41)

P(qelgi=1,9e41) = ()
And it is not feasible to construct a context dependence
model corresponding to the above conditional proba-
bility distribution. For simplicity, we assume that ¢(t)
satisfies a first order partial dependence property with
respect to both the backward and the forward direction:

P(qelgi-1,9:-2, - q1) = P(Qt‘%—l)a 1<t <
P(gelgis, qeso oo ar) = Plaelgesr), 1<1<T

(6)
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We also assume that the state transition is time aligned
such that

P(g = Sjlgi-1 = Si)
P(q = Sjlge+r = Si)

P(gi4r = Silgiyr—

55
P(qt—T = Sj'qt—7+l o

)
where 7 is an integer representing an appropriate time
shift.

The above process ¢(t) is hidden from observation,
i.e. one can not assess ¢(t) directly but one can assess
another discrete stochastic process that depends on this
underlying process.

(1)

2.2 The observable process
Let o(t) be a discrete stochastic process such that
oty =0, €V,

f=19-. 7 (8)

where

V:{vl’v37"'aV1V1} (9)

is a set of observation symbols, and Vi, o; satisfies:

M
Y Plo=Vy) =1 4

Thus, any observation sequence can be expressed as:
(1)

Now consider the property of o(t) and notice that
it depends on the underlying process q(t) only. For
simplicity, we assume that o(t) satisfies the following
symbol emission property:

P(oc]q1),
P(o:),

O =o0109---07, o, €V, 1§1§T

g €X

qi ¢ X (12)

P(o|X) = {
where X is a set of random events and o, ¢ X'.

2.3 Dual properties

Let us consider the probability of a state sequence Q
given all the above assumptions. Denoting the model
as \, we have

PQI)) = P(q11A\) P(g2lg1, A) - - P(grlar—1, ) 19)
P(QIA) = P(gr|N) Plar-1lgr, A) -+ Plarlg2,3)

Thus, we can use a dual pair of HMMs AU and A
represent A:

(®) 1o

A= (AU AC) (14)

11f we let o; € X, in the case that X = {o¢}, we will have
P(ot|ot) = 1.



- Using this notation, we have

P(QIN) = P(ar|A®) -+ P(g1]g2, A)

and the probability of a state sequence @ given a model

- ) becomes
P(QIN) = -

[P@AD) + P@A®)]  (16)

N | —

24 Model elements

Based on previous discussion, we can construct a dual
hidden Markov model using the following elements:
i

o forward state transition matriz
i

A = {a]} (17)
where
an-') = P(g: = Sjlgt—1=5:)
N
Za’(;) =l (18)
j=1
- o backward state transition matriz
' b
A0 =1 (19)
- where
() _ Bl =
a;;" = P(q: = Sjlqe41 = Si)
N
Z az(g) = (20)
g=1
* symbol emussion matriz
B = {b;(k)} (21)
bj(k) = P(o. = Vklq: = S;)
M
> (k) =1 =
A=l
'.imtz‘al state distribution matriz
= (23)
szgf) = Plg1 = S5i)
N
24
S (24)

97

o final state distribution matriz

=l (25)

where

") = P(gr = 5))
NI

sz(b) =1

=1

(26)

Using the above elements, the dual pair of HMMs
involved in this description can be expressed as
(N = aH ()
A (AY), B, xlJ)) (27)
A0 = (A(b), B, r(®)

2.5 Model types

Similar to a hidden Markov model, A/) and A®) can
be classified into either ergodic model or unidirectional
(left-right) model in the light of the constrait on their
state transition, where the former type has full state
transition while the latter type has only unidirectional
state transition. In the light of its component models,
a dual hidden Markov model can be classified into one
of the four types:

1. ergodic-ergodic
2. ergodic-unidirectional
3. unidirectional-ergodic

4. unidirectional-unidirectional

3 Observation Evaluation

Based on previous discussion, given an observation se-
quence O and a model A, we have

POY) = > POIQ,NP(QIN
Q
= 313 POIQ. NP@QIAY) +
Q
Y POIQ, V) P(QIAM)]
Q

o %[P(Oi)\(f)) +PON®)]  (28)

Associating Baum’s forward and backward variables
with the forward direction (see Figure 1), the forward
component probability can be computed as:

N
Y o @0 ), wi
p(0|)‘(f)) =

Y i),
=1



el
i ()

(b) backward variable
70 51
>0 5,
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t
s (i)
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p

Figure 1: Forward-backward procedure in forward state
transition

where agf)(i) and ,Bt(f)(t) are the forwad variable and
the backward variable associated with the forward di-
rection, respectively:

ol (i) = P(0102 -+ 01,40 = Si]AY)) (30)

A (@) = Plogp10i42 ---orle = Si, AY)) (31

and a%f)(i) and ﬂfjf)(i) can be solved inductively, see
[9] for more details.

The backward component probability can be com-
puted in a symmetric manner by associating Baum’s
forward and backward variables with the backward di-
rection. We drop the details here for brevity.

From the above one can see that the computational
complexity of this procedure is O(TN?).

4 Multiple Observation Train-
ing

Let us consider a set of observation sequences from a
pattern class:

o={oM o®. . il (32)
where
O®) = oMof) ...olf), 1<k<K (33)

are individual observation sequences. Assuming that
O¥) are independent each other, the multiple observa-
tion probability under the model can be expressed as:

K
P =[] 0™ (34)
k=1
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Using the maximum likelihood estimate method, we
have the following training equations for the forward
component model:

1. forward state transition probability:

K Tr—1
u,(cj) Z Et(‘f)(k)(m,n)
ey = t=1 .
amn T K TEE1 (&5)
S 3 AW )
k=1 =

1
where 1 <m,n < N.

2. symbol emission probability:

=

[ug) + ug))]
bp(m) =

|
-
il
=
—_
[
=

b
[vi(cf) + 1/'1(6 )]

Ao

a
I
-

where 1 <n < N,1<m< M, and

Ope

T
k
S 90

t:l,osk):vm

1

¥

t:Tk,osk):vm (37)

Tk
Ul(cj) L Vl(cf) Z,\/t(f)(k)(n)
t=1

1
=4 3 A )

t=T

g

:Uk

3. initial state probability:

K
Z U’(if),),gf)(k)(”)
feaitie oo s
Z V]Ef)
k=1

where 1 <n < N.

In the above equations, the coefficient V,gf) is given
by:
P(O® N
Vlif) 2 (0 | ) (39)

= TPO®)

and Et(f)(k)(m,n) and ’yt(f)(k)(m) are joint event and
state variable associated with O%) in forward state



transition, respectively. Et(j)(k)(m,n) and 'yt(”(k)(m)
are defined as:

~ backward state transition and hence can be defined
- symmetrically.

The training of the backward component model is
~ symmetric and hence we drop the details for brevity.

5 Conclusions

In this paper, we have presented a dual hidden Markov
“model (DHMM) capable of handling bidirectional con-
lext dependence. The DHMM contains two hidden
Markov models (HMMs) that share a common sym-
‘bol emission matrix. One of the HMMs deals with
the backward context dependence (forward state tran-
sition) while the other deals with the forward context
dependence (backward state transition). The bidirec-
tional information is then integrated into state sequence
evaluation.

~ Based on this integration, the observation evalua-
tion problem has been solved using Baum'’s forward-
kward procedure. The DHMM multiple observa-
1 {raining equations have also been derived using the
dmum likelihood estimation method. These equa-
always guarantee the convergence of the training
process.

- The DHMM has the advantage over the conven-
ional HMM in that that it explores the context de-
ndence bidirectionally while it does not increase the
nputational complexity. Furthermore, the concept
bidirectional context dependence can be generalized
the concept of multidirectional context dependence
dthence it can help to explore more complicated cases
such as a hidden Markov random field (HMRF).
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{t(f)(k)(m,'n) =Hle =S g0 0
k
- agf)(k)( )afr{f)lb1l(0§+)1)/3t(-{-) )(n) (40)
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N
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