A GESTURE-BASED EDITOR
FOR SHORT HANDWRITTEN MESSAGES

Jean-Jules Brault, Réjean Plamondon and André Laframboise

Laboratoire Scribens
Ecole Polytechnique de Montréal
P.O. Box 6079, Downtown Station
Montréal, Québec, Canada, H3C 3A7
e-mail: brault@scribens.polymtl.ca
26 mars 1995

Abstract

The messages that we send are often short enough to fit
on one or two pages. Because these memos are not
intended to be integrated into another document, it is not
necessary to edit them with an ASCII word processor or
sophisticated graphics software. This project describes a
working prototype of a handwritten entity editor
operating on an electronic slate and using gestural
commands that simulate the paper/pen/scissors/glue
paradigm. The system analyzes the sampled handwritten
coordinates in real time, and segments them following a
hierarchical structure allowing, for example, the
"wordwrap" feature of conventional wordprocessing. The
segmentation and recognition of the gestural commands
of the system are evaluated on sixteen users.

1. Introduction

The arrival on the market of electronic slates (note-pads)
has opened up new areas for research and applications.
This new type of computer uses the display screen as a
writing surface, and generally consists of a transparent
digitizing tablet superimposed on a liquid crystal display
screen. The pen generates a trace on the screen (called
"electronic ink") which can be erased, moved, copied and
modified at will by the user. The screen becomes an
"intelligent" sheet of paper, thus enabling the
development of a very wide variety of new applications.
In addition, notepads now integrate numerous functions
usually handled by separate systems like fax machines,
e-mail, cellular phones and pagers. These new, integrated
systems are known as personal digital assistants (PDAs)
or personal communicators (PCs).

The first electronic slates to be commercially
successful were the GRiDPADs, marketed by GRiD
Systems in 1989. Note that a number of research
laboratories [1,3,7,8,11,13,16], have developed prototypes

Vision Interface 95 162

enabling study of the equipment and software aspects
of this new type of tool. Today, several major
companies offer similar products (Apple, Compagq,
EO, Fujitsu, IBM, NCR, NEC, Sharp, etc.) and
operating systems have been designed to enable the
development and use of the pen-screen interface for
many existing applications, as well as future ones
(Microsoft’s Windows for Pen, PenDos, PenRight!,
GEOS 2.0 SDK, Newton Intelligence). The reader
wishing a more complete picture of who is involved
in this emerging industry (called "nomad computing")
and information on product suppliers can consult
specialized publications geared to this market (like
PEN Magazine [14] and Pen Computing Magazine
[15D).

Although the equipment is improving rapidly,
there are still major steps to be taken in terms of
sampling and display resolution, and in computing
power. However, it is in the software domain that
improvements are most eagerly awaited. In fact, the
two most important problems that will have to be
resolved are the recognition of handwriting and the
recognition of the subjacent structures of a document.

Handwriting recognition involves not only
alphanumeric characters and cursive writing (i.e.
nonsegmented), but also the various symbols and
drawings encountered in other spheres of activity.

Structure recognition, on the other hand, applies
not only to textual structures (lines, paragraphs,
columns, etc.), but also to drawing structures (like
the topologies of electronic circuits). This is a much
younger research domain than that of isolated
character recognition, however. It was often
neglected because their subjacent structure being
more or less taken for granted. For the past few
years, it has been the subject of serious study,
particularly in the area of printed documents [2,9,10]

Vision Interface 95

Some electronic slate applications do not require the
recognition of alphanumeric characters. This is the case,
for example, in editing handwritten text. A complete,
effective and ergonomic handwritten text editor would be
a powerful and useful tool for application where a
printed text is not a requirement. The idea of an
handwritten text editor is not new. As long ago as 1969,
Coleman [4] suggested the use of gestural commands for
editing printed text on the screen. Since then, a number
of studies have been carried out in this domain
[5,7,12,17] to mention a few.

The object of this paper is to report on the steps we
have taken in building a prototype of editor for
handwritten entities. This system is designed for use in
the fairly specific but frequently encountered case where
the user must quickly write, edit and send short and clear
messages consisting of one or two pages of text and
simple drawings.

The article is structured as follows: We analyze the
needs of the users of paper notepads, which we all are,
in order to determine the needs of users of electronic ink
editors. The implementation of tools that can respond to
these needs is then described, with an emphasis on the
capabilities that such a system should possess, namely
stroke interpretation, and the segmentation and
structuring of handwritten entities following execution of
a command. The results of an evaluation carried out
among sixteen writers, with comments justifying the
suggested guidelines is given in the conclusion.

2. The needs of paper notepad users

Writing involves four operations which are carried out on
a cyclical basis: thinking, writing, reading and
modifying (or editing) what has been written. All the
modifications that the writer can make to his text are be
made with the following two activities: inserting
(adding) and deleting (removing). The basic tools that he
needs are something to write on (paper), something to
write with (a pen or pencil) and a means for erasing (for
example, an eraser). Of course, how effectively the
writer carries out this sequence of operations depends on
his or her experience. Thus, the addition of a third
editing action, for example move, will make the writer’s
use of the scissors/glue combination (the so-called "cut-
and-paste"” technique) more efficient. The
"paper/pen/eraser/scissors/glue” paradigm has serious
limitations, however, because once the writer stops
"cleaning” the text, homogeneity and legibility degrade
rapidly.

Vision Interface ‘95 163

3. The needs of

notepad users

Although an electronic notepad is a computer, the
minimal needs of a user of an electronic ink editor
for preparing and transmitting short handwritten
messages (text and drawings) are different from those
of the user of a conventional word processor (or
graphics software) for preparing a thesis, for
example. Our objective here is to exploit and
improve the skills that all writers have been able to
develop with the "paper/pen/eraser/scissors/glue"”
paradigm, without too much modification of their
skills and expectations. The same tools for editing
text on paper notepads must be reproduced for the
electronic ink editor. However, it would be easy to
envisage adding other functions, given that electronic
ink is virtual and held in memory (i.e. carriage
return used to create a new paragraph, and printing,
Jaxing and copying).

One of the principal differences between the
"paper/pen..." paradigm and its virtual counterpart is
that editing activities must be executed by the system
and not by the writer. Because the commands have
to be interpreted, errors may be introduced: errors of
interpretation! These errors are of two types. The
first are related with the recognition of gestural
commands as such, and the second, with the
identification of the entity on which the command is
to be executed. An unequivocal means for identifying
this entity (text or drawing) must be found, and for
this, a new activity, select, needs to be added to the
editor. Note that this command must also be
recognized...

The correct execution of several commands is
based on the assumption that handwritten entities are
organized into an adequate data structure, a constraint
which is subjacent to the "reorganization” capability
of the electronic notepad. Indeed, when a subject
writes a series of words, he leaves a space between
them to make the words easier to read. However,
since we frequently lift the pen within a word as well
as at the end of it, thereby creating supplementary
spatial discontinuities in the words, the software must
continually interpret any discontinuities as either
intra-word or inter-word. Additional functions must
be added to the editor, therefore, for cases where the
spacing has been misinterpreted. These functions are:
link (...of parts of a word mistakenly segmented),
unlink (...of a group of words mistakenly linked
together), and ultimatly "undo".

electronic

Vision Interface ‘95

4. Implementation

Development was carried out on the Microsoft operating
system Windows for Pen. Based on the needs of users of
electronic notepads, the capabilities of the editor are
grouped here for discussion under six themes:
1. Coordinates acquisition, 2. Data discrimination
between gestural commands or handwritten components,
3. Segmentation and structuration (...of handwritten
components), 4. Commands recognition. 5. Modification
of the manuscript displayed, 6. Personalization of
thresholds. These themes constitute the principal modules
of the system that have been developed [12].

4.1 Acquisition and segmentation of

coordinates

The IBM-compatible GRiD 2260 was used for data
acquisition, which consists of a transparent digitizing
tablet superimposed on a liquid crystal display screen
The coordinates (x(t), y(t)) are recorded sequentially
while the tip of the pen is in contact with the surface
ofthe tablet. A series of points, called here after a
component, start with a pen-down movement and end
with a pen-up movement. This constitutes the first level
of segmentation. The second level, the 'fusion of
components, is reached when they are grouped into
blocks (groups of spatially close components) which will
subsequently be processed as words, graphic elements or
handwritten commands. This fusion process is governed
by a threshold that can be modified by the user. We
decided for a very simple proximity measure, which is
the spatial distance as measured along the base line (or
line) of writing (note that the NotePad application
supplied with Microsoft’s Windows for Pen uses time as
a segmentation parameter which has been found
inadequate and frequently misleading in our application.

4.2 Discrimation between gestural com-

mands and handwritten components
The question here is, do we have to spell out to the
system the nature of future strokes or let the system
guess what they will be? We have decided to implement
all the possibilities with the aid of a "pencil case"
metaphor integrated in a tools bar at the top of the
writer’s work space (Figure 1). For this project, five
tools were defined, corresponding roughly to elements
usually found in a conventional pencil case, namely a
lead pencil (to enter only handwritten text), a blue pencil
(to enter both handwritten text and gestural command),
a red pencil (to enter only gestural commands), a
drawing pencil (to enter only drawing) and an eraser.
The use of the blue pencil requires an algorithm to
determine if the blocks of components obtained after the

Vision Interface ‘95 164

second level of processing (done by the acquisition
module) are handwritten components or gestural
commands. This algorithm performs rapidly since the
gestural commands (shown in Table 1) are quite
different from handwritten text. If three or more of
the five following tests are not fulfilled, the
algorithm classify the block as a command: (1) the
number of handwritten components must be higher
than three, (2 and 3) the number of maxima and
minima (according to the y axis) must be higher than
two, (4) the aspect ratio of the block must be higher
than a threshold, and (5), the intersecting surface of
componants must be lesser than a threshold.

The list of "text" blocks is then sent to the post-
segmentation and structuration module (section 4.3),
and the list of "gestural command” blocks is sent to
the editing command recognition module (section
44).

4.3 Post-segmentation and structuration
The system must be able to recognize a minimum
number of handwritten entities (the word, line and
paragraph for the text, and, elements and figures for
the drawings). The type of manuscript recognized by
our system is made up of a sequence of pages, each
one composed of a top/down sequence of paragraphs
(and figures, if there are any) laid on one column.
Each paragraph is composed of a top/down sequence
of lines, themselves composed of a left/right
sequence of words. Each figure is composed of a
variety of graphic elements.

The blocks that were written in an empty space
on the page are arranged, one after another, on one
or more lines. This process is governed by user-
modifiable fusion thresholds, which make it possible
to decide where the blocks belong. Those written
above the blocks already identified as text are fused
(accents which will be added later, words that have
"i"s to be dotted and "t"s to be crossed, etc.)

4.4 Recognition of editing commands
Table 1 shows the 11 gestural commands
implemented as well as their meaning (the number
identify each command for futur references as in
Figure 4d). Again, the range of possible gestures is
very broad. However, we wanted them to be simple,
coherent, easy to remember and to recognize.

The input of this module is the list of "gestural
command” blocks (see section 4.2). This list is
examined in order to group, or split up, the
components of each blocks according to a spatial
threshold. That can be modified anytime by the user
(see section 4.6). Each command to be recognized is

Vision Interface 95

xg3

SR 4

{ Fichiers Edition Té

S,
lécopie

Bt

Op‘tio‘s Outils .

Fenétre Edition

Figure 1: Writer’s tools bar.

Commands and Gestures Il Commands and Geshires I thﬁn'ﬂnds and Gestures W'Cbmrhani!s and CcStures
SELECT ERASE COPY MOVE
i2 [:'
5 O) & 7 \
q S
INSERT LINK UNLINK RETURN
; /\ :—J _/ l\: :

Table 1: Gesture commands. The number identify each command for futur references as in Figure 4d.

composed of one or more components. The recognition
process is carried out here in 3 steps: (1) Extraction of
five representative points for each component; (2)
Calculation of discriminant measures based on these five
points; (3) Recognition of the command using a Bayes
classifier.

The representative points of a component are, besides
the first and last points of the component, those located
at the 1/4, the 1/2 and the 3/4 of the time taken to
execute the component. These five points will be referred
to as points 1 to 5. The calculation of the 12
discriminant measures (defined in Table 2) is achieved
with the aid of these representative points. The
parameters used for each measure is shown in Figure 2.

The recognition of a command is the last step in the
process. It is based on a two-by-two comparison of
specific subsets of discriminant measures (of Table 2) for
each of the 36 pairs ((8+1)8/2) of different commands.
Note that there are nine different building strokes for the
ten gesture commands. For example, the subset used to
discriminate the building stroke "opening crochet” from
the "arrow tip" was found to be 5, 6 and 7. A two

Vision Interface ‘95 165

classes Bayesian classifier is used to discriminate
each pair of classes. The one that wins more often
must also wins a minimum number of time. If the
threshold is not passed, the command is said to be
"not recognized" and the writer must repeat the
gesture command.

4.5 Modification of the document to be
displayed
The most interesting aspect, but also the most
problematic, one of the modification module is, of
course, the reorganization of the document following
the execution of a command. It is through this
process, for example, that empty spaces resulting
from the deletion of words are eliminated. The
success of the reorganization mechanisms lies in the
quality and accuracy of the segmentation, and in the
structure of the subjacent data. After an execution of
one of the commands 5, 6, 7, 9, 10, or 11, each line
of a given paragraph is modified according to the
"reentrant” algorithm described by this pseudocode:

Vision Interface ‘95

Compute the maximum length of a line
UNTIL (current text line is not full) REPEAT
FOR (each concerned word of the line)
IF (the current word is within the current line)
Compute the baseline of the word
Ajust the baseline of the word to the baseline of the line
ELSE IF
End the current line
Take the next line as the current line
IF (the current line is not full and a next line exist)
Concatenate the next line to the current line
Reorganize the current line

50

: >

. X
an-], n
Figure 2: Parameters 6, d, d, and d, computed from two
representative points P, and P, of a component
(defined here as an handwritten trace between two
consecutive pen-lifts).

4.6 Personalizing thresholds

The system must be able to adapt its segmentation and
recognition parameters to the handwriting and particular
preferences of individual users. To mention a few, the
users are able to modify the different spacings between
words, lines and paragraphs, before and after
reorganisation. He also have a choice of recognizers.

S. Example of operation

Figure 3a shows a short handwritten message (with text
and drawing) as entered initially. Figure 3b shows the
same message as segmented by the system with boxes
around the words, lines, paragraph and elements of the
drawing in order to show to the user the handwritten
entities as part of a hierarchical structure. We note
however that some text segmentation errors have
occured. Figure 3c shows the gestural commands to
correct these errors as well as other commands to modify
the original text. The figure shows these commands as
entered by the user. It should be noted that it is not
possible to see Figure 3c on the user screen since the
commands are actually executed as soon as they are
recognized by the system. Figure 3d shows the final
result of the text part of the message.

Vision Interface 95 166

Number and
Name of the measure
(ratio)

Equation

0. Relative dimension

nys = dis/d,,

1. Potential corner index s = ((dyg +dyg) - dy5)/dyg

2. Horizontal projecti =
rizontal projection Tas dx‘,ldu

3. Vertical projection

s d’uld“

4. Signed local
curvature

(at middle time
point)

rgm =((x - 013) b 635)/“

5. Signed local
curvature
(at Y4 time point)

o = (% - 8) + 6)/ 7

6. Signed local curvature

(at % time point) Toye = ((m = 83) + eu)/%

7. Curvilinear

_ (dyy+dyy+dy,+d,)

r

5 (dyy+dy)
8. Partial horizontal r, = d_' 14,
projection (first quarter) % 1
9. Partial horizontal r. =d Jd
projection (last quarter) e ,‘,/ =
10. Partial vertical =

ial vertic % d,,ldu

projection (middle
part)

11. Curvature sign
dominancy
(for measures 4,5,6)

S = sign(rou) + sigu(rom)
+ sign(r,)

Table 2: Definitions and symbols of the 12 measure
ratios used to discriminate between the 9 building
strokes of gesture commands.

6. Preliminary evaluation

To evaluate the system, we camried out two
experiments to test the following separately: (1) the
segmentation of text based on textual structure; (2)
the recognition of gestural commands. These
experiments were conducted with the help of two
groups of 16 individuals.

For the first experiment (on segmentation), one
group used the cursive editor. They had quite varied
writing styles which means that segmentation could
be tested in a number of different situations. We
asked them to transcribe, in cursive, two typed

Vision Interface 95

To A TC-Ul prgmbans 2

durimgs The ZCDAR o8- Gngormee. , o
/,/,myf;,f;,, will b fulld s The Qe

lapdeie M7, Moitnsal

—_1{

ReME - LEVESQUE BLvD.

Peae |

Figure 3a
To il TC-t
iy
sty il e ol @

Quosre Elaphetc 172 (Mo
M;%W

Figure 3c

MANSFiELD St.

UNIVeRSI Ty ST

mmﬁmywﬁﬂw a7
e [P0 rplictl] V12724 [l lizal
Ed ZCDAR (95 fonjorance]

"!ém

g gl

{

Figure 3b

To M TC-Ul fﬂmf-" :

owr ,,mrf-m? il be Il o Tha
Quesr (96/1‘}4/&672& 72, Mait 2l
o‘ufmﬂz ~he. ZCDAR '95 C}nﬂhmcz_

Figure 3d

Figure 3: Example (see text for details).

paragraphs of 3 lines each (equivalent to 5 to 8
handwritten lines). The second group of individuals was
asked to read these handwritten texts and to segment
them into words, lines and paragraphs. This enabled us
to compare the segmentation performed by the software
with that carried out by the human subjects.

The percentages of error obtained were found to be
highly dependent on the writer. The segmentation into
words (Figure 4a) of the writing of seven of the writers
was performed with less than 5% error. However, error
rates as high as 30% were also obtained. On average, the
mean error rate for the segmentation into words was
11 %. The results were, of course, better for the
segmentation into lines (Figure 4b), with a mean error
rate of 8.5 %). It appeared that the same writers were
responsible for the poor performances of the system in

Vision Interface 95 167

both cases. Samples from these writers will be shown
at the conference.

For the second experiment, the recognition of
gestural commands (see Table 1 for the numbering of
the gestural commands) was carried out on a blank,
text-free, page. Figure 4c shows the error rates
obtained as a function of the writer and Figure 4d
shows the emor rates obtained for each of the
gestural commands. A mean recognition rate of 85%
was obtained.

7. Guidelines

Prototyping a complete system has lead to specify
more clearly some of the requirements that will have
to be met in a next version. These recommendations
are grouped under three headings: interface quality,

Vision Interface 95

system performance (segmentation and structuration), and
gestural command recognition.

A. Interface quality. We have found that it is not
necessary to be overly committed to the
"paper/pen/eraser/scissors/glue” metaphor. The major
remarks from the users were:

- The "pencil case" concept don’t seem very appropriate.
Users did not like the excessive use of the menu bar to
tell the system to consider a stroke as a gestural
command or a handwriting component.

- The way we "move a selection” must be change. The
"drag & drop" metaphor borrowed from direct-object
manipulation software seems a better choice.

B. System performance (segmentation and structuration).
We found that structure recognition is an essential part
of the process and that a great deal of efforts must be
placed on this aspect of the problem.

- A single type of measure (spacing) was really not
sufficient, given the importance of segmentation in the
editor.

50+
451

I Mean=11 l

©
o

Word segmertation error (%)
e 8 8 8

104

Qrrzrrriizz

N LNL,
LN LNA,

Writers
Figure 4a
50+
454 ! Mean=16.2 I

Cornmands recognition error (%)
]

@ \
151 NS
NN
1 N NSINGEG \é
N
S5t N -
N\ s
o A\ SN HNANINY
PR R R T ey
3ct8 7 g ogf 43 4§
Wriers
Figure 4c

- The thresholds (inter-word and inter-line spacing)
should be automatically adjustable, as a function of
a continuous €rror measure.

- Enable the command undo to function at many
levels.

C. Gestural command recognition. As long as the
speed/accuracy trade-off will favor the speed, we are
bound to put aside excessive but perhaps necessary
processing. However:

- The five time-based characteristic points for
analyzing gestural commands are not enough reliable
nor reproducible for all subjects. Instead, it would be
a good idea to count on the global distance, even if
this results in an increase in the calculation time.

- The user must have the possibility to define the
regions that constitute the context of the application
(figure/text/command).

Line segmenrtation error (%)

101
5- §

o Ny ey

2 4 8
3. =57
Figure 4b

- [Vean=131 }
45+ IMesn-13.1 }

Cornrmarls recognition error (%)

Figure 4d

Figure 4 A. Word segmentation error rate for each of the 16 writers. B. Line segmentation error rate for each of
the 16 writers. C. Command recognition error rate for each of the 16 writers. D. Command recognition
error rate for each of the 11 commands shown in table 1.

Vision Interface ‘95 168

Vision Interface 95

8. Conclusion

The prototype described here constitutes a viable and
versatile skeleton on which it will be possible to
construct and test various modules dealing with data
acquisition, preprocessing, gestural command and textual
structure concepts and algorithms. It is difficult to
compare our tool with other tools of the type described
elsewhere, because this is new field and one in which
comparison criteria have not yet been established. Some
new products have since been commercialized but not
yet evaluated. However, the expectations of the public
are very considerable, because we are all experts in the
use of the "paper/pen/eraser/scissors/glue" paradigm and
we all expect these systems to respond to our wishes
intelligently. Serious study should be devoted to this
aspect of notepad development and such studies are
currently under way in our laboratory.

9. References

[1] BARTLETT, W.M, OMOHUNDRO, S.M,
ROBISON, A.D., SKIENA, S.S., THEARLING,
K.H., YOUNG, L.T., WOLFRAM, S., "Tablet:
Personal Computer In The Year 2000,
Communications of the ACM, Vol. 31, No. 6, pp
638-646, june 1988.

[2] BELAID, A, BRAULT, J.J. AND CHENEVOY,
Y., "Knowledged-Based System for Structured
Document Recognition", Proc. of 1990 IAPR
Workshop on Machine Vision Applications, Tokyo,
pp 465-469, november 1990.

[31 BROCKLEHURST, E. R, "The NPL Electronic
Paper Project", International Journal of Man-
Machine Studies, Vol. 34, pp 69-95, 1991.

[4] COLEMAN, M.L., "Text Editing on a Graphic
Display Device Using Hand-Drawn Proofreader’s
Symbols”, Pertinent Concepts in Computer
Graphics: Proc. Second Univ.of Illinois Conf.
Computer Graphics, M.Faiman and JNievergelt,
(eds.), Univ. of Illinois Press, Champaign, Ill., pp
282-290, 1969.

[5] DOSTER, W. and OED, R., "Word Processing
with On-Line Script Recognition", IEEE Micro, pp
36-43, october 1984

[6] HANSEN, C, "Pen Computers in the Federal
Government", PEN, pp 51-53, march/april 1993.

Vision Interface ‘95 169

[7] HIGGINS, C.A. AND DUCKWORTH, R.J.,
"The Pad (Pen And Display)- A Demonstrator
For Electronic Paper Project”, Computer
Processing of Handwriting, Editors R.
Plamondon and C. G. Leedham, World
Scientific Publishing Co., pp 111-131, 1990.

[8] HIGGINS, C.A., FORD,D. M., "Stylus Driven
Interfaces - The Electronic Paper Concept”,
First ICDAR 91, pp 853-862, Saint-Malo,
France, September 1991.

[91 ICDAR 91, Proc. First International
Conference on Document Analysis and
Recognition, St-Malo, France, 1010 p., october
1991

[10] ICDAR 93, Proc. Second International
Conference on Document Analysis and
Recognition, Tokyo, Japan, 964 p., october
1993

[11] KANKAANPAA, A., "FIDS-AFlat-Panel
Interactive Display System", IEEE Computer
Graphics&Applications, pp 71-82, march 1988.

[12] LAFRAMBOISE, A., "Conception et
Réalisation d’un Editeur d’Ecriture Cursive 2
Commandes Gestuelles", M.Sc.(Applied) Thesis,
Ecole Polytechnique de Montréal, 172 p.,
december 1993.

[13] PARIZEAU, M., "Reconnaissance d’Ecriture
Cursive par Grammaires Floues avec Attributs:
Ftape vers la Conception d’un Bloc-Notes
Electronique”, Ph.D. Dissertation, Ecole
Polytechnique, 321 p., august 92.

[14] Pen Magazine, published bi-monthly by Pen-
Word Inc.

[15] Pen Computing Magazine, published bi-
monthly by Pen Computing, Inc.

[16] POBGEE, P.J., "A prototype System for
Interactive Input of Cursive Information",
National Physical Laboratory Report DITC
125/88, september 1988.

[17] WELBOURN, L. K. AND WHITROW, R. J,,
"A Gesture Based Text And Diagram Editor",
Computer Processing of Handwriting, R.
Plamondon and C. G. Leedham Eds., World
Scientific Publishing Co. pp 221-234, 1990.

Vision Interface ‘95

