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ABSTRACT

A number of movement generation models
have been proposed over the past few years, among
them the Delta Lognormal model. This model which
has been proven to be the best fit for the study of
simple human movements, has also explained many
psychological phenomena that have been observed for
several decades. Using this model to analyze data from
complex movements like handwriting poses a practical
problem to researchers, however, which is the
development of robust parameter extraction methods
capable of handling the signals of actual movements. In

this paper, this problem is examined by describing

various approaches to the extraction of parameters with
the Delta Lognormal model. Techniques are described
for lognormal parameter estimation and are then
adapted to the Delta Lognormal model.

RESUME

Plusieurs modeles de générations de
mouvements ont ét€ proposés depuis quelques années.
Parmi ces modeles on retrouve le modele Delta
Lognormal, qui est considéré parmi les meilleurs
modeles pour décrire la génération de mouvements
simples; et qui permet d'expliquer des lois observées
depuis maintenant plusieurs décennies. L'analyse des
données proposées par ce type de modeéle présente
toutefois, une difficulté de taille; soit le développement
de méthodes robustes d'extraction de paramétres pour
des signaux de mouvements complexes, tels les
mouvements générant de 1'écriture manuscrite. Dans
cet article, on fait le tour de la question en exposant
différentes approches pour 1'extraction de parameétres
appliquées aux courbes a profiles Lognormales. On
propose aussi un algorithme général pour 1'extraction
de parameétres du modtle Delta Lognormal appliqué
aux signaux d'écriture manuscrite.

I- INTRODUCTION

Several movement generation models have
been proposed over the last few decades [PLA-
89a][PLA-93¢e][ALI-93a][ALI-93b]. Among these, the
Delta Lognormal (AA) model stands out not only
because it yields more accurate estimations of velocity
profiles for simple movements, but also because it has
provided explanations for many phenomena that have
been consistently observed over the past decades [PLA-
92a][PLA-92b][PLA-93a][PLA-93b][PLA-93c][PLA-
93d]. It lends itself to the study of various movements,
such as arm, eye, etc.

The movement generation model proposed by
Plamondon [PLA-87][PLA-89b][PLA-92b]J[PLA-
93a][PLA-93b] is based on the premiss that a
movement is constructed from the superimposition of
simple movements. Each simple movement,
corresponding to an impulse command, involves two
neuromuscular networks: an agonist and an antagonist
channel. Each of these channel enables the production
of lognormal velocity profiles. The resulting velocity
signal follows a delta lognormal profile [PLA-
93a][PLA-93b], which is the subtraction of the action
of the agonist and antagonist channel.

The analysis of complex movements using the
Delta Lognormal model poses however some practical
difficulties, due to the fact that delta lognormal
equations, as lognormal equations, are nonlinear with
respect to most of their parameters. And, in the case of
composed movements, such as handwriting, where
many simple movements are superimposed, we need to
handle typically 3 to 10 delta lognormal equations
simultaneously, which means 21 to 70 parameters to
extract jointly (7 parameters for each delta lognormal
equation).

The development of robust parameter
extraction methods for nonlinear equations presents a
number of problems. One of the major, is the
difficulty of developing approaches that make it
possible to ensure the convergence of numerical
nonlinear regression methods when there is a large



number of parameters. The numerical methods
generally used for this type of problem therefore
require a judicious choice of initial conditions in order
to ensure convergence. This choice becomes even more
critical as the number of variables increases, and the
development of robust methods capable of guaranteeing
convergence in all situations becomes essential for
extracting parameters from complex signals, such as
velocity signals from handwriting movements, where a
significant number of parameters must be estimated
jointly.

In this paper, we describe a parameter
extraction techniques used for analyzing handwriting
signals with the Delta Lognormal model. These
techniques have been kept fairly general, however, and
can be used for the analysis of any compound signal
that can be described by the Delta Lognormal model.
We present two parameter estimation approaches here
for application to a simple lognormal curve: a
numerical method and a graphical method. The
graphical approach is then applied to the AA model,
which in turn enables the application of the nonlinear
regression techniques during the process of extracting
the parameters from the AA model. Finally, a global
approach is described that enables parameter estimation
for the superimposed AA that generally comprise more
complex signals such as handwriting signals.

II - ESTIMATING THE PARAMETERS OF A
LOGNORMAL CURVE

II.1 - Lognormal: functions and distributions (A)'

In 1879, Galton [GAL-79] showed that if X,,
X,,-..X, are random independent and positive
variables, then (equation (1)):

@

Iy =H Xj
=1

log(T;) =" log(X,)
J=1

Thus, if the random variables log(X;) are such
that the central limit theorem applies, then the
distribution of log(T,) tends toward a normal
distribution when n tends toward infinity.

Distributions of the lognormal type may be
defined as distributions of a random variable, the
logarithm of which is normally distributed: N(u,c?)
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[EDW-88] (see equation (2)).
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Where:
A) is definied only for x>x,.
p: is a scale factor.
o: is a shape parameter (c>0).
and Ln(x-xy) is normal N(p,0).

AQxxy, 1, o) =

Since then lognormal equations (as normal or
gaussian equations) have been used in a multitude of
applications. The lognormal equation is nonlinear with
respect to its parameters X,, u and o. The equation (1)
is also presented in a normalised case where the area
under the curve is 1. In a more general situations we
use to represent the area under the curve by the letter
D.

In the following sections, two methods are
presented which enable the estimation of the parameters
(D, xp, p and o) for lognormal equations.

I .2 - Estimation of parameters by the method of
moments

The first method proposed by Cohen and
Whitten [COH-80] may be summarized as follows:

Given the following change of variables:
B=exp(y), in order to simplify the form of the
equation. The form of the lognormal curve then
becomes as expressed in equation (3).

3)
L
A(x;xo,ﬁ,o) = m*e 202("1 B )

Thus, if a new shape parameter is introduced
of the form w =exp(c?), then the values of the mean
E(x), the median Me(x), the mode Mo(x), the variance
V(x) and the third moment o,(x) may be expressed as
seen in equations (4). And the mean, variance and third
moment may be estimated by equations (5). The
following three equations are obtained, with three
unknowns Xx,, B and ®, equations (6). The third
equation (in (6)) may be transformed into equation (7).
Thus, X,, p and ¢ may be estimated by x,", u* and ™
(see equations (8)).
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E(x) = x0+Bw1’2 (mean)
Me(x) = x,+B  (median)
Mo(x) = x+Bw™ (mode)
V() = BAw(w-1)) (variance)
#,(x) = (0+2)(@-1)?  (third moment)
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In the case of distribution analysis the area
under the curve should be equal to 1. In the case of a
more general equation the area D should be estimated
by a numerical integration of the function profile.

This method involves fairly intensive
calculations and has some obvious weaknesses. First,

these calculations consist in manipulating differences
raised to powers of two (estimation of variance) and
three (estimation of the third moment), and are
therefore highly sensitive to signal noise and involve
non negligible errors on the estimation of u, ¢ and x,.
The authors [COH-85] were fully aware of this
weakness, and as a result they proposed a modified
method that obviated the need to estimate o,. The
second defect in this method (but not the least
important one) stems from the fact that there is no
analytical or heuristic means to evaluate the quality of
the parameters estimated. In other words, it can never
be known whether or not the distribution or the
equation that one is trying to estimate using a
lognormal is in fact suited to this type of estimation,
and, if it is, to what extent. Because of these defects,
another approach came in use which, in spite of its
simplicity, enabled the total or partial solution of these
problems.

I1.3 - Graphical parameter estimation

The graphical approach described in this paper
appears in [WIS-66] and enables the more general
testing of whether or not the data seem to coincide with
lognormal profiles, and, if so, makes it possible to
estimate their parameters.

It should be noted, however, that the method
described in this section is purely heuristic and has no
rigorous analytical basis.

=

X, H X,

Figure 1 Lognormal A.

The graphical method works as follows: two
inflection points I, and I, are located on the curve (see
figure 1). Slopes B, and B, can then be measured from
the two tangents to the curve that pass through these
inflection points. © is estimated solely from the ratio of
these slopes, where B, is the ascending and B, the
descending (see equation (9)).
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This function in ¢ may be estimated by
inverse linear interpolation from the data presented in
Table I, which covers the values of o between 0.01
and 0.80. The lower limit x, is estimated solely from
the points of intersection of the tangents with the X
axis (X, and x, (see equations (10)).

(10

(xz xl)

= _(x2+ l) -

m{m WM

The divisor L can also be estimated by linear
interpolation from the values presented in Table I.
Finally, p is estimated by the following function (11).

(11)

w

B = 50 + —log((xl—xo)(xz-xo))

Once these parameters have been estimated,
the quality of the estimations must be evaluated. This
is done by comparing them with the ratio y,/y,,. A
good approximation of this ratio is given by the
equation (12), which gives a quick way of evaluating
the quality of the estimates.

(12)

)’H
Iu

= 1213 - 0.0502

The last estimation that can be extracted from
these measures is the area (D) under the lognormal
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curve. By measuring the area (A) of the triangle
(C,x,,X,), area D can be estimated using the following
relation (13).

(13)

N

- 1.0332 (1 +%02)

This very simple approach yields very good
estimations of the parameters G, u, X, and D. Also,
this method offers a simple heuristic for responding to
a fundamental question: To what extent is the data that
we are trying to model related to a A profile?

The quality of the estimations obtained might
be improved by using the method of moments or the
graphical method, and by applying more accurate
numerical methods such as the Levenberg-Marquardt
nonlinear regression techniques [MAR-63], the initial
conditions for which being the parameters estimated by
one of these two methods. This would mean that the
divergence effect of the numerical methods would be
avoided and their convergence time minimized.

III - ESTIMATION OF THE PARAMETERS OF A
SUCCESSION OF AA CURVES

The AA curves, with respect to the model
proposed by Plamondon [PLA-93a] represents the
impulse response of the neuromuscular systems
involved with the production of a simple movement.
The resulting velocity profiles are thus the subtraction
of two synchronous A, starting at the same moment t,
representing respectively the agonist and antagonist
activity of the system. The general equation of the AA
model for a simple velocity profile is expressed by
equation (14).

(14)
-5 (nlt—tg)-,)?
1 20
AA() = *e !
2na,(t-1y)
D2 -— (n(t-tg)-p)*
2ma,(t-t,)

The analysis of complex signals, such as
velocity signals for the generation of handwriting,
generally involve a succession of AA superimposed (see
figure 2). In extracting the parameters of these AA
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equations, we must therefore consider the processed
signals as superimposition of AA. Because many of the
signals are superimposed in addition to being sequenced
in time, however, these curves must be processed
jointly and simultaneously.

Exemple de courbes deita log-normales superposées

Figure 2 Example of superimposed AA curves

Parameter estimation can therefore only be
carried out iteratively: the parameters of a AA curve
are first estimated roughly and then iteratively on the
signal extract to eliminate the effect of its
superimposition on the rest of the signal. This step is

- Estimation of the AA
- parameters.

Initialize all of the N AA
parameters at O.

* REPEAT the process X times

Initialize: Signal =
Original - Estimations

Add the estimation of
the n*" AA.

Estimate the n*" AA in
the region [a,b],

Substract the new esti-
mation from the n** AA

j REPEAT for each AA

Algorithm #1

repeated until the deviation between the old and new
estimates is smaller than a certain threshold. In
practice, two iterations often prove to be sufficient.
The algorithm installed for this step of the processing
is as we can see beside (algorithm #1). Figure 3 shows
the estimation of the parameters of the second AA
curve (L2). The first iteration yields a rough estimation
of the parameters of each AA. During the second
iteration, the parameters of a particular AA are
evaluated with greater accuracy, since the adjacency
effec. is subtracted from the other AA.

s

]

j&

L1 2 3

=== Superpesition L13,3 —+— Gouctraction de L2
™ Delta log-Mormal L8

Figure 3 Parameters estimation

The parameters of a AA curve are estimated in
two passes. The first uses the graphical method
described previously which enables estimation of the
parameters of a A curve; these parameters are used in
the AA model simply by dividing the area D between
the positive A and the negative A in such a way that
D,>D, and D=D,-D,. The second pass, which makes
greater accuracy possible by leaving all the parameters
free (0,20, and p,#u,), is in fact the Levenberg-
Marquardt nonlinear regression method [MAR-63].
This method is applied for each AA curve taken
individually in the signal. (The entire method is
repeated for the desired number of iterations. Two
iterations are generally sufficient.)

It may happen that parameter estimation of the
AA curve cannot be performed, particularly during the
first iteration, because of extensive superimpositions
involving two adjacent AAs. In this case, estimation of
the AA curve is set aside while the next curves are
estimated. Estimation of the preceding AA curve
becomes possible once its immediate neighbours to the
left and right have been estimated.

Once a good estimation of the parameters of
each of the AA curves has been obtained, a global
evaluation of all the parameters is carried out
simultaneously, using the Levenberg-Marquardt



nonlinear regression method [MAR-63].
IV- RESULTS

The extraction techniques described before
were used for analyzing handwriting samples (figure
4), where the curvilinear velocity profiles were
estimated with the superimposition of AA curves.

o TR T S PR ey e e e
Figure 4 Handwriting sample

In this particular case we have to estimate the
parameters of 9 AA curves superimposed which means
63 parameters simultaneously. The first estimation of
the parameters was realised with the graphical method,
as shown by the dotted curve in figure 5, combined
with one iteration of the nonlinear regression process.
All the process can take around 10 seconds on an IBM
compatible machine (486Dx at 33MHz). On this simple
example the method of the moment has failed in
finding an approximation to the A curves. As we can
see in figure 5, the result of the graphical method are
good enough to be considered as an acceptable
solution. The mean square error between the original
and the reconstructed signal for this example is around
4.24 cm?/s after 1 iteration of the nonlinear regression
process.

The global approach is then used as an
optimising process. The result of parameters extraction
can be seen in figure 6 where we present the
superimposition of the original curve and the estimate
(dotted curve) after a 150 iterations of the nonlinear
regression process (each iteration can take over 8 sec).
The optimising process has permitted to reduce the
mean square error to around 1.29 cm?/s, which is the
best we can do in this kind of situation in "reasonable"
processing time (around 20 minutes for this example).
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Figure S Curvilinear velocity estimated with the
graphical method

30

250

Figure 6 Curvilinear velocity estimated with the global
approach

V- CONCLUSION

The parameter estimation methods presented
in this paper for solving the problem of extracting the
parameters of a lognormal curve (A) are a graphical
approach and an analytical approach. However in
practice through tests on actual cases, we have found
that the analytical method is highly sensitive to signal
noise. This sensitivity is the result of manipulating
differences that are often raised to powers of two or
three. When computing the moments, the effect is that
the importance of noise is amplified relative to that of
the signal. This technique was rapidly abandoned,
therefore, in favor of the graphical approach, which, in
spite of its simplicity, offers very satisfying estimations
of the parameters of a lognormal curve, in a calculation
time that is very reasonable. In addition, this approach
makes it possible to determine quickly whether or not
part of a signal can be modeled by a AA curve, and, if
not, the decision can be made to move to the next AA
curve until estimation of the previous curve is possible,
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and then to return to the AA curves that have not been
estimated when the effect of superimposition can be
subtracted from the signal. The estimation of the
parameters of a A curve was used to estimate the
parameters of a AA curve by combining it with the
Levenberg-Marquardt nonlinear regression approach,
and then generalizing it to the case where the
compound signals of a number of concatenated AA
curves are processed. This parameter extraction
technique introduces a level of robustness that was not
achieved with nonlinear regression techniques alone.
These techniques can present problems when there is a
large number of parameters, since they will only
converge with a judicious choice of initial conditions.
The estimation of initial parameters by the graphical
method and then by nonlinear regression techniques has
been found to be fairly effective for processing
complex signals such as the velocity signals generated
during handwriting movements. The mid-term objective
of the project is to analyze parameters extracted from
various movements in order to better understand the
laws governing human motor behaviour, which also
will help to provide a better understanding of various
perceptual phenomena that share the same basic
information, as suggested for example by Viviani
[VIV-92].
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TABLE I
c log(B,/B,) L c log(B,/B,) L
0.01 .0200 .0200 0.41 .8257 .6782
0.02 .0400 .0400 0.42 .8461 .6890
0.03 .0600 .0600 0.43 .8666 .6996
0.04 .0800 .0799 0.44 .8870 .7099
0.05 .1000 .0997 0.45 .9075 .7199
0.06 .1200 .1194 0.46 .9280 .7297
0.07 .1400 .1391 0.47 .9486 .7391
0.08 .1600 .1587 0.48 .9691 .7483
0.09 .1801 .1781 0.49 .9897 1572
0.10 .2001 .1975 0.50 1.0103 .7659
0.11 .2201 .2166 0.51 1.0310 .7743
0.12 .2401 .2356 0.52 1.0516 .7822
0.13 .2602 .2545 0.53 1.0723 .7903
0.14 .2802 .2731 0.54 1.0930 .7980
0.15 .3003 .2916 0.55 1.1137 .8054
0.16 .3203 .3098 0.56 1.1345 .8125
0.17 .3404 .3278 0.57 1.1553 .8195
0.18 .3605 .3456 0.58 1.1761 .8262
0.19 .3806 .3632 0.59 1.1969 .8327
0.20 .4007 .3805 0.60 1.2178 .8390
0.21 .4208 .3976 0.61 1.2387 .8451
0.22 .4409 .4144 0.62 1.2596 .8509
0.23 .4610 .4309 0.63 1.2805 .8566
0.24 4811 .4472 0.64 1.3015 .8621
0.25 .5013 .4631 0.65 1.3226 .8674
0.26 5214 .4788 0.66 1.3436 .8725
0.27 5416 .4942 0.67 1.3647 8775
0.28 .5618 .5093 0.68 1.3858 .8822
0.29 .5820 .5241 0.69 1.4069 .8868
0.30 .6022 .5386 0.70 1.4281 .8913
0.31 .6225 .5528 0.71 1.4493 .8956
0.32 .6427 .5668 0.72 1.4706 .8997
0.33 .6630 .5803 0.73 1.4918 .9037
0.34 .6833 .5936 0.74 1.5131 .9075
0.35 .7036 .6066 0.75 1.5344 9112
0.36 .7239 .6193 0.76 1.5558 .9147
0.37 .7442 .6317 0.77 1.5772 .9182
0.38 .7645 .6437 0.78 1.5987 .9215
0.39 .7849 .6555 0.79 1.6202 .9246
0.40 .8053 .6670 0.80 1.6417 .9277
1. "Life is . . . multiplicative rather than additive; the log-normal distribution is more normal than the normal”,

Anon in "The Scientist Speculates”, page 213 (ed. 1.J. Good, Heinemann, 1962).
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