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Abstract

Basic research work in the field of
Automatic Handwritten Signature Veri-
fication Systems (AHSVS) has been
carried out for more than ten years at
the Scribens Laboratory. This paper
reports on the latest achievements in
the AHSVS using gray-level images that

we proposed recently [4-6]. A novel
handwritten signature representation
permits the local analysis of gray

levels along the signature
mitting the elimination
classes of forgeries,
tracing, photocopy, simulated and
freehand. This work demonstrates the
fact that skilled forgeries that show
a great dissimilarity in contrast
between primitives pairs located on
solution path N can be discriminated
successfully.

line, per-
of wvarious
i.e. random,

Résumé

De nombreux travaux de recherche
ont été réalisés au Laboratoire
Scribens depuis les dix dernieres
années, notamment dans le domaine de
la vérification automatique de 1'iden-
tité. Cet article présente les der-
niers résultats expérimentaux obtenus
avec l'utilisation des images de si-
gnatures manuscrites [4-6]. Une nou-
velle représentation des images de
signatures manuscrites permet 1'ana-
lyse locale de la luminance dans le
trait de la signature. Cette nouvelle
approche favorise 1'élimination de
diverses classes de faux; les faux

aléatoires, les calques, les photoco-
pies, les faux avec imitation servile
et les faux avec imitation libre. Les
résultats expérimentaux présentés dans
cet article permettent d'avancer le
fait que les faux caractérisés par une
forme similaire a la signature authen-
tique peuvent étre éliminés si une
différence de contraste suffisamment
élevée subsiste entre les paires de
primitives localisées sur le chemin
solution N.
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1. Introduction

A recent survey of the litterature
on automatic signature verification
and writer identification by computer
has been presented by Plamondon and
Lorette [1]; all systems proposed in
the field of AHSVS using gray-level
images show an wupper 1limit to the
total minimum error rate of eipin *®
5%. The best experimental results have
been obtained by Ammar et al. [7] with
a type I error rate of €y = 67 and a
type II error rate of e, = 4% (simula-
ted forgeries), Nouboud et al. [12,13]
with €; = 2% and ey = 87 (random for-
geries%, and finally by Brocklehurst
[14] with € = 5% and €p = 57 (simple
forgeries). Moreover, all AHSVS failed
with tracings and photocopies, produ-
cing 1007 of Type II error rates.

A feasibility study [2] has shown
that features derived from the direc-
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tional space can discriminate effi-
ciently between classes of writers.
The use of graphometric features (that
is to say, characteristics used by the
expert document analysts [15]) taken
interactively reveals that structural
measurements are powerful enough for
the elimination of simulated forgeries
[3]. From these exploratory experi-
ments, a model-based system dedicated
to the interpretation of handwritten
signature images has been built around
a novel signature representation [4-
6], permitting the local analysis of
gray levels along the signature line;
this approach allows the elimination
of tracings and photocopies showing a
great local dissimilarity in gray
levels.

2. Data acquisition and Preprocessing

The data acquisition process takes
into account the video signal f(i,j)
coming from a vidicon camera and is
sampled with a spatial resolution of
128x512 pixels. The resulting gray-
level image 1is then analysed by the
preprocessing phase which is subdivi-
ded into two stages, the gradient com-
putation and the background elimina-
tion processes. The gradient at loca-
tions (m,n) is evaluated over the
entire gray-level image with the Sobel
operator. The resulting filtered image
is then analysed by the background
elimination process. Because the hand-
written signature line is characteri-
zed by a high gradient activity, the
density function F(|V|) is computed
and a threshold T is automatically
settled [2]. Finally, all pixels at
location (m,n) with a high gradient
activity, that is to say |V|(m,n) 2 T,
are labelled as signal pixels. Pixels
not satisfying the latter constraint
are labelled as background pixels.

3. Primitive Extraction (PE)

The signature image is afterwards
analysed by the primitive extraction
process [4,5], which is responsible
for the production of the primitive

sets necessary for the structural
interpretation of the handwritten
signature by the comparison process

[6]. The strategy adopted
mitive extraction process takes into
account the collinearity of neighbou-
ring signal pixels in the directional
plane of the gradient space. This task
is also performed in two stages.
First, a Region-Growing-With-Merging
process (RGWM) [4] growth the signal
pixels into atomic regions characte-
rized by the wuniformity of a local
property, i.e. the orientation of
their gradient vectors. The resulting
atomic regions belong to the signature
line or represent  spurious noise
elsewhere in the scene.

The word, "ah!", depicted in Figures
la and 1b, will serve as a case study
to illustrate the various stages of
the AHSVS. The goal of this experiment
is to evaluate a static similarity
measure SS(Pr,Pt) between the refe-
rence image (Figure la) and the test
image (Figure 1b). As stated previous-
ly, the RGWM process applied to the
gray-level image in Figure la produces
the atomic region set shown in Figure
lc. The cardinality of the resulting
atomic region set is Nr = 408 regions.
An enlargement of the letter "a"
depicted in Figure 1d shows the atomic

in the pri-

region partitions in the gradient
space.
The second stage of the primitive

extraction process 1is responsible for
generating the primitive set that is
related to the signature 1line. As
shown in Figure 1le, the High-Level-
Merging process (HLM) begins with the
elimination of sparse atomic regions,
resulting in Nr = 82 regions. The HIM
process continues with a hierarchical
merging scheme, and takes advantage of
neighbouring atomic regions collinea-
rity in the directional plane of gra-
dient space. The biggest regions from
the atomic region set act as a focus
mechanism, governing the merging pro-
cedure. Two directional constraints
are used for guiding the growing pro-
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Figure 1: A reference (a) and a test image (b). The atomic region set is shown

(c) with the enlargement of the letter "a" in (d). The filtered ato-
mic region set (e) and the resulting reference primitive set Pr pro-
duced by the High-Level Merging process (HLM) in (f) to (h). The
enlargement of the latter "a'" showing the partitions of the reference
primitives are depicted in the directional space (i). Finally, the
test primitive set Pt (j) and the related adjacency table (k) produ-
ced by the HLM process when applied to the test image (b).

Vision Interface '90



97

cess. A local threshold 8, is a requi-
site for controlling the collinearity
of neighbouring pixels along the com-
mon border of two atomic regions to be
merged. In the present work, the
directional threshold is settled to &
= 45°. It was shown in [5] that the
-number of primitives generated by the
HLM process tends to stabilize for a
value of ®; 2 45°. A second constraint
is related to the circular variance

compared to the mixture of the cor-
responding circular distributions. The

circular constraint Rm is settled to
values corresponding to the circular
variance of n angular observations

with a wuniform distribution on the
unit circle, with directional means of
45°, 67.5° and 180° [5]. The resulting
primitive set is therefore characte-
rized by a collection of arbitrarily-
shaped primitives.

Following this experiment, the pri-
mitive sets resulting from the action

of the HLM process, varying gradually
the circular constraint Rm [5], are
depicted in Figures 1f to lh. This

hierarchical merging
primitive sets with

scheme produces
cardinalities of

Nr = 25, Nr = 19 and Nr = 8 primiti-
ves. In Figure 1i, an enlargement of
the same letter "a" shows the resul-

ting primitives Pry - € Pr related to
the representation of a reference
handwritten word in the directional

space.
The strategy adopted for the
comparison of handwritten signature

images makes a distinction between the
reference primitive set Pr and a test
primitive set Pt produced by the
primitive extraction process. When a
test primitive set Pt is required, the
primitive extraction process restricts
the final level of merging in the HLM
process. The test primitive set Pt
shown in Figure 1j reveals a higher
level of fragmentation resulting in a

test primitive set Pt with a higher
cardinality (Nt = 14). This strategy
enables the use of a contextual
template-matching mechanism in the

final merge of test primitives Pty €
Pt. This partial segmentation scheme
allows greater of flexibility in the
local interpretation of test primiti-
ves Pt, € Pt, taking into account the
intrinsic handwriting variability.

The HLM process is also responsible
for the evaluation of adjacency
between neighbouring test primitives
in the directional space. The adjacen-

cy table ADJ is therefore used by the
comparison process, i.e. by the Local
Interpretation of tests Primitives
(LIP) sub-process. Two neighbouring

test primitives P sand Pty teare
adjacent if their difference in local
directional means, @1 and @2, computed
from gradient vectors located in
vicinity of their common border, is
less than a directional constraint ©
[5]. The resulting adjacency table ADJ
computed from the test primitive set
Pt depicted in Figure 1j is shown in
Figure 1k. This highly restrictive
definition of adjacency between pairs
of neighbouring test primitives will
diminish the computational complexity
of the next LIP process.

4. Local Interpretation of test
Primitives (LIP)

The LIP process is responsible for

the labelling of all test primitives
Pt, € Pt, given, a reference primitive
set Pr. The A" algorithm previously
proposed [8-9] 1is replaced by a par-
tially informed best first BF strate-
gy governed by a new evaluation func-
tion f(n) = f(g(n),h(n)), where heu-
ristics are embedded in f(n) [6].
The local confidence rating between a
test primitive subset Pt., e Pt,
tentatively labelled as reference
primitive Pry; e Pr, is given by

Fs(v) =1 - £f(y) , (1)
where 0 < Fi(v) <1 . (2)
The 1local confidence rating F;(v)

takes a value near unity for a perfect
match in 1local features between the

subset of test primitives Ptv:y e Pt
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and the reference primitive Pr. ¢ Pr.
The local interpretation of Bt ias Prs
terminates with the set of pr1m1t1ves
e Gl —ee s S{IE »Pty} e Pt.

5. Global Interpretation of the Scene
(G18)

The first stage of the GIS process
involves the evaluation of a static
similarity 9,(Pr,Pt) between the test
primitive set Pt and a reference pri-
mitive set Pr. Following the example
depicted in Figure 1, a state space
graph G"=(V",E") is built as shown in
Figure 2, from the set of local inter-
pretations Fi(v) # 0 evaluated at the
LIP stage of the analysis.

The state space graph G"=(V",E") is
defined as an oriented graph where no-
des (states) are grouped in k 2 2
disjoint subsets V;, 1 < i < k (pha-
ses). So, the set of nodes V" may be
defined as the union of all subsets,
as V" Vl U V2 G s s V2 o s Vk’ The
static cost (51m11ar1ty$ at node v ¢
V; may be defined as
Si-l,i(u’v)=(Ri-1,i(u’v)+Fi(V))/2 (3)
The factor R;. 1. 1(u v) represents the
similarity in spat1a1 relations (N, S,

E, W, NE, NW, S E, S W and ADJ_TO)
between pairs of reference primitives
Pr;_.y and Pr; € Pr, and the spatial
relations between pairs of related
test primitives Pt and Bt € Pt. Fi-
nally, node v 3 where the accu-

mulated cost COST; (v%
pushed on list Ny = v.
Assuming the use of a Greedy algo-
rithm at the GIS stage, the cost
COST;(v) is therefore defined as [6]

maximum, is

COST;(v) = COST;_1(u) +

(24 % 53-1,1i(u,v)), (4)

where u

=Nj
v € Vi
<u,v> € E"
3 <1ic<gk-1

and Ny =+v | MAX { COST (v) } , (5)
Vv e Vi

O°<R. 7 ;6] =1 (6)
0 < Fl( el (7)
0 <Q; Croes (8)
Moreover, initial conditions are
defined as thelrelations

cosT (1) =0 , (9)
Ny = 3, (10)
COST,(v) = s % Fz(v) for ¥ ¢ V, (11)
N, = v | MAX { COST,(v) } . (12)

Vv e V2

The final step is therefore defined as

Nk =t=% (13)
COSTy(t) = COSTy_;(u) (14)
where u = Np_; (15)

The normalization factor Q; in
equation (4) takes into account the
ratio, in area, of the reference

pr1m1t1ves related to each phase (Pr

= V;) € V" to the entire area of e
reference primitive set Pr.
Qs = AREA(Pri) + AREA(Pr) (16)

This permits an additional penalty for
primitives not yet included in the
definition of V". Finally, Q; emphasi-
zes prominent reference primitives in
set V" in the evaluation of a global
static similarity measure 94(Pr,Pt).
The static 51m11ar1ty SaiPriPL)
between a reference pr1m1t1ve set Pr
and a test primitive set Pt is finally
defined as the following relation

(17)

94(Pr,Pt) = COST(t) ,
0 < (18)

9. (Pr,Pt) <1 .

The example depicted in Figure 2
results in a static similarity of
94(Pr,Pt) = 0.8730 between the two

and Pt shown in
The solution path
cost are presented in

representations Pr
Figures 1h and 1j.
and related
Table 1.
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Figure 2: The state space graph G"=(V",E") and the solution path resulting

from the comparison of the reference primitive set Pr shown in
Figure lh and the test primitive set Pt in Figure 1j.

Table 1: Solution path from the state space graph G"=(V",E") in Figure 2.

Vi Ni F;(v) R;_1,4(u,v) COST;(v) Pry Ptv:y

1 1 ------ - 0.00000 = --=

2 3 0.8404  ------ 0.0624 8 { 14 }

3 4 0.8679 0.9116 0.1400 4 {9 }

4 8 0.8182 0.8522 0.1974 7 { 13 }

5 14 0.8093 0.9232 0.2326 3 { 8 }

6 18 0.7778 0.8680 0.2986 6 {3128 = Tl 2}
7 25 0.8447 0.9234 0.4901 2 5, 3adia
8 31 0.9019 0.9478 0.5933 5 { 10 }

9 42 0.8275 0.9166 0.8730 1 7222, bt )
10 50 ------  ------ 0.8730 e ===

A pseudo-dynamic similarity measure of the writing process dynamics, which
Sd(Pr,Pt) is therefore computed at the produces gray levels variation along
end of the GIS process with the use of the signature line. A pseudo-dynamic
the resulting static solution path N = cost Dg(v) is evaluated from the local
15, V[, V9, s Ty WSy,  t). By .analysis.sjof ‘the - gray levels dmside
"pseudo-dynamic', we mean the effect pairs of primitives Vs {Pri’Ptv:Y}
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located on the solution path N. D;(v)
is defined as the similarity in the
proportion of "black pixels'" belonging
to primitives Pry ¢ Pr and Pt.. € Pt.
The proportion of black p1xels is
evaluated automatically with a discri-
minant analysis [16] of the gray-level
density function computed from pixels
belonging to primitives‘Pr and Pt,,

The pseudo-dynamic 51m11ar1ty
measure 94(Pr,Pt) is defined as

34(Pr,Pt) = (Qy * Fo(v) * DB(v)) +

k-1
2 (Q; * S5.7 3(u,v) * DB(VID), (19)
i=3
where
v e Vy v = Nj s (20)
=€ Vi_l u = Ni'l > (21)
IN|] =Tk ; (22)
Nl =8 I (23)
Nk ==t > (24)
0 < Fi(v) <1 5 (25)
0 mug s {logu)as 1 : (26)
g =1 ( <1 = (27)
0o = B <5 = (28)
g =y <] (29)

The pseudo-dynamic factor Dg(v) in
equation (19) acts as an additional
penalty when the cost of the solution
path N is revalued. The effect of co-
efficient B on the pseudo-dynamic fac-
tor D%(V) is shown in Figure 3. As
term D;(v) is already normalized in
the range of values 0 £ Di(v) <1, the
coefficient B gives a non-linear
transfer function when B # 1. A small
difference in terms of the pseudo-
dynamic features gives a very high
penalty when B tends toward B =

6. Experimental Results

Let w; be the class of genuine
handwritten signatures and wp be
defined as the class of forgeries. A
test image from class w; or wp is
compared to three reference signature
images for a specific writer enrolled
in the AHSVS, and identified with a

DBI(V)

In° B=2o B=Oe B=4- B=54 B=1/2 w B=1/3 o B=I/4 w B=1/5

Ol 0z 03 04 05 08 07 08 06 1.
DiCv)
Figure 3: The transfer curves of

pseudo-dynamic feature D;(v), varying
the value of coefficient B in the
< B £ 5 range.

specific ID number. The best similari-
ty 84(Pr,Pt) obtained from the compa-
rison process is therefore dispatched
to the decision process. All maximum
observations $4(Pr,Pt) resulting from
the comparison of a test image and
three reference 1images for all speci-
mens in class w; and class w) are
accumulated in a similarity measure
database. The probability functions of
resulting maximum similarity measures
Sd(Pr,Pt) are therefore computed con-
sidering an equal a priori probability
for each class w; and wy, say P[ml] =
Plwy] = 0.5. The experimental results
are expressed in terms of total mini-
mum error rates €i :, resulting from a
scan of the similarity threshold =t
from value zero (0) to one (1) on the
similarity scale, so that

gelt) = (P[wll e
Plwy] * ez(r)) 100,11 30)
where P[w;] = P[wp] = 0.5 , (31)
and D¥E ey (z) £ 100 , (32)
o<1, eg(t), ep(a) <1 -, (33)
with  eppsn = MIN { g(v) } . (34)
0<% <

The Type I (e;) and Type II (ej) error
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rates are expressed as

€] = el(Tmin) * 100 , (35)
€y = ez(tmin) * 100 , (36)
where®- 0 <€, &, € 108 e (37

6.1. Simulated Forgeries Experiment

The first data base was built for
analysing the possibility of the AHSVS
discriminating  between genuine and
simulated handwritten signatures. This
small data base consisting of 28 ge-
nuine specimens from one target sub-
ject, 28 random forgeries from seven
different writers, 100 simulated for-
geries from ten different forgers and,
finally, 17 specimens of freehand for-
geries (see examples in Figure 5). The
production of the simulated forgeries
through imitation was made with one
hour of practice. The handwritten sig-
nature model was placed on the table
near the sheet used by the forger for
imitating the original specimen. No
tracing was permitted in this first
experiment. In the case of freehand
forgeries, the forger has had, over a
period of almost five years, many
occasions to practice his imitations
of genuine specimens, and the imita-
tion was produced from memory.

Many simulation runs were conducted
varying the value of parameter B (see
equation (19)) in the 0 £ B £ 5 range.
Let us recall that the pseudo-dynamic
similarity measure Sd(Pr,Pt) corres-
ponds to the static case §;(Pr,Pt)
when factor f=0. First, all types of
forgeries are mixed. The total minimum
error ~radte €, s equals eprs =1L017
(with €7=10.717 and €9=13.10%) in the
static situation with B=0. As shown in
the Figure 4, the pseudo-dynamic
scheme has no effect in this experi-
ment. Numerical results with random,
simulated and freehand forgeries taken
individually are also presented. All
random forgeries are eliminated for
this target. Not surprisingly, the
elimination of simulated forgeries
with €rpin = 7.36% (with €7=10.717% and
€9=4.07) is better than freehand

100 f o freehand
o a glmulated
~ 80F
s nl o ale + sim + fres
B w
& wf
m-
2F
1

Figure 4: Total minimum error rates
Stmin:
forgeries with g4.:, = 33.19% (with

€1=42.867% and €7=23.53%) in the static
case (B=0). For this small-scale expe-

riment, we can say that the pseudo-
dynamic scheme has no significant
effect on the elimination of skilled
forgeries wusing a '"Pilot Fineliner"

with a flexible fiber tip.

6.2. Random, Tracing and Photocopy
Forgeries Experiment

A second experiment with random,
photocopy and tracing forgeries was
conducted. A data base consisting of
248 genuine  handwritten signatures
images from eight different writers,
divided into 28 test images and 3
reference images per writer has been
built. In the random forgery experi-
ment, Class Wy iis related: to: “the 28
genuine handwritten signatures per
writer, while class w consists of 4
test images from each of the seven
other writers. All specimens were
written with the same kind of pen,
that is to say a "Pilot Fineliner"
with black ink and a flexible fiber
tip.

The second part of this experiment
used the same 248 genuine handwritten
signature data base as class w; with 3
genuine references per writer. This
time, class w is related to the
tracing forgeries. The following
experimental protocol is the same as
for the eight writers in the genuine
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handwritten database. Tracing forge-
ries are produced with two pens, where
pen {1 is similar to the '"Pilot
Fineliner" used for the creation of
the genuine data base, and pen #2 is a
Hewlett-Packard tracing pen with black
ink and a 0.25mm rigid tip. Pen #2
with a 0.25mm rigid tip was selected
on the basis of the mean line width of
test handwritten signatures from the
data base. All of the tracing forge-
ries were made by only one forger,
with the help of a translucid drawing
table. 10 tracing forgeries were made
with each tracing pen, for all target
writers. A short example is depicted
in Figure 5 where the primitive set of

a genuine handwritten signature
appears in 5a, with a tracing forgery
made using pen #1 and pen {2 are

shown in Figures 5e and 5f. A tracing
forgery made with pen #1, as depicted
in Figure 5e, shows a thicker line
width caused by a constant pressure
acting on the flexible pen tip during
the drawing process. This pictorial
effect is a standard characteristic
observed in forensic science for this
type of forgery made with a flexible
fiber =pen ¢Etip2~[10,71IF. “A-“tfdcing
forgery made with tracing pen #2 using
a rigid pen tip is depicted in Figure
5f. The resulting drawing is characte-
rized mostly by a regular line width,
and the tremor along the signature
line is more visible.

Finally, in the third part of this
second experiment, class w) consisted

of photocopies of the 224 genuine
handwritten signatures in the data
base.

Many numerical simulation runs were
conducted with the signature data base
in an attempt to estimate the perfor-
mance of the AHSVS with a pseudo-
dynamic similarity measure Sd(Pr,Pt).
A global threshold t,., = tmin (equa-
tion (34)) was fixed by the random
forgeries experiment with eight wri-
ters. In fact, random forgeries are
generally used as class wp in the
evaluation of the global threshold <t

set (a) related
genuine handwritten signature
depicted in (b). A simulated (c) and a
freehand (d) forgeries are followed by

Figure 5: A primitive
to the

a tracing with pen #1 (e) and pen #2
€
for the exploitation of commercially

AHSVS in real situations [1].

In brief, €; is related to Type I
error rates evaluated with the genuine
signatures, and €5., to Type II error
rates computed with random forgeries.
Type II error rates for tracing forge-
ries, considering all 160 specimens
produced with pen #1 and pen #2, are
shown as €9¢rs» While €2trpl and €2trp2
show the Type II error rates by pen
types taken individually. Finally,
€25h i1s related to the Type II error
rates for the class of photocopies.
The probability function of resulting
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Figure 6: €; and € error rates eva-
luated with a common threshold t,,.
maximum similarity measures Sd(Pr,Pt)
are computed considering equal a
priori probability for class wj and
each  of ‘the w,: classes taken indi-
vidually, that is to say P[wl] =
Plwy;] = 0.5.

In the static case (B=0), the Type
I error rate is 81=O.OZ, and the Type
LI ertor “rates' related [0 thHe wy;
classes taken individually using a
common threshold = are respectively
esa == 1,004, €2ty = 099,387 and
ezph=95.982. Experimental curves
depicted in Figure 6 show, in the
pseudo-dynamic case (B#0), a clear
downward trend in Type II error rates
related to tracing forgeries and pho-
tocopies, and a corresponding upward
trend in Type I error rates. Numerical
values obtained with scaling factor B
settled to B=5 are €1=8.93%,
Eg.o=L: 197, €9¢,=42.507 and
ezph=61.16%. The AHSVS dependency on
pen type is clearly visible when
tracing forgeries with pen {1 and pen
#2 are taken individually. In the best
situation (B=5), their resulting Type
IT error rates are €2trp1=6'ZSZ and
€2trp2=78'752'

6.3. Simulated Forgeries with t .,
Numerical results obtained from the
first experiment (section 6.1) with
skilled forgeries are plotted in
Figure 7, with the same threshold <t
evaluated from all random forgeries

ra

100¢
001
g .l
< n
B w
& o}
0\-
: :
- 1R
ol :;? El = E2ra = 0Z
to 1.0 20 =Y 2.0 5.0

Figure 7: Skilled forgeries experiment
evaluated with a common threshold LToat
contained in the AHSVS data base
(section 6.2).

The pseudo-dynamic scheme enables a
better elimination of simulated forge-
ries for this related target, conside-
ring a Type II error rate of €5,4,=91%
in the static case (B=0) and €)sim =
58.627% when @=5. However, the pseudo-
dynamic scheme has no effect on the
elimination of freehand forgeries with
€2¢,=1007 for all B values. This fact
suggests that the gray levels along
the signature line is very similar for
genuine and freehand signatures writ-
ten with this writing tool. Random
forgeries were always eliminated for
this specific target writer.

7. Conclusions

A new scheme is advocated for the
design and analysis of automatic hand-
written signature verification systems
using gray-level images. The use of a
novel handwritten signature represen-
tation allows the 1local analysis of
contrast evaluated between pairs of
primitives located on the static solu-
tion path N; this approach permits the
elimination of tracings and photo-
copies having the same shape than
genuines signatures, but showing a
great local dissimilarity in gray
levels along the signature line. As
stated by the expert document analysts
[10,11], the elimination of tracing
forgeries and photocopies seems a less
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difficult task than the elimination of
freehand forgeries written fluently.
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